Building a rich-CRDT
database on AntidoteDB.

RainbowFS Workshop, Monday 28 March 2022
Sorbonne-Université—LIP6, Paris, France

James Arthur, CEO

https://vaxine.io

https://vaxine.io

~N.
~Aplanet scale, hig

ABOUT

CONTACT

“Vaxine”

TCC+ is a Cure for
consistency under
partition

Antidote
Implements the
Cure protoco

Vaxine is a delivery
mechanism for
the Antidote

L4

Delivery
mechanism

Godals @

Client
cloud database d
not edge [p2p / byzantine tolerant
Load Balancer
online system 0 e
& Writes

not offline / local first

Node | Node 2

5 - 15 data centres

Nnot hundreds or thousands

optimised for latency + integrity

not throughput or storage efficiency

Node 3 Node 4

Backend App

Phoenix (inc. LiveView) Absinthe

Vax

Ecto Adapter Vaxine driver Migrations PubSub

Vaxine

Reservations Data model Queries Subscriptions

Storage Tx controller Live events

Antidote

DB Cluster

Inter-DC replication

Backend App Public HTTP, Sockets GraphQL

Vax

Ecto Adapter Vaxine driver Migrations

20 Vaxine

Reservations Data model Queries Subscriptions

Storage Tx controller Live events

Antidote

DB Cluster

Chris McCord
@chris_mccord

I'm thrilled to announce I've joined @flydotio! They'll
support my continued work on Phoenix while | help
grow their geographic global deployments around Elixir
and Phoenix. Imagine turn-key PubSub + LiveView +

your greater app running on every continent. This is the
future!

10:47 PM - Aug 20, 2021 - Twitter Web App

87 Retweets 16 Quote Tweets 797 Likes

O 0

Ecto

(Ectov3.7.2)
Ecto is split into 4 main components:

e Ecto.Repo - repositories are wrappers around the data store. Via the
repository, we can create, update, destroy and query existing entries. A
repository needs an adapter and credentials to communicate to the
database

Ecto.Schema - schemas are used to map any data source into an Elixir
struct. We will often use them to map tables into Elixir data but that's one
of their use cases and not a requirement for using Ecto

Ecto.Changeset - changesets provide a way for developers to filter and
cast external parameters, as well as a mechanism to track and validate
changes before they are applied to your data

Ecto.Query - written in Elixir syntax, queries are used to retrieve
information from a given repository. Queries in Ecto are secure, avoiding
common problems like SQL Injection, while still being composable,
allowing developers to build queries piece by piece instead of all at once

oo ([J 0 @ phoenixframework.org ¢ ©O M + ©

The world

YY) ©®® @ https://my-phx-app.com
defmodule TimelineLive do @seradio
use Phoenix.LiveView s Episode 394: Chris McCord on

Phoenix LiveView

def render(assigns) do @nathanwillson

render("timeline.html", assigns) . Using @elixirphoenix's LiveView to
end filter over 800 tree species

(https://treelib.ca/species). I'm so
BN B O > 0 5] & hexdocs.pm e @ [‘E + def mount(_, socket) do impressed with how fast it is and how
Twitter subscribe("elixirphoenix") easy it was to write. #myelixirstatus
- #phoenixframework 4 @ A
{:0k, assign(socket, :tweets, [])}
end

def handle_info({:new, tweet}, socket) do

{:noreply,
</>
ECtO / @ update(socket, :tweets, fn tweets —>
Enum.take([tweet | tweets], 10)

(Ectov3.7.2) end)}
end

- e r - d
Ectois Spllt Into 4 main components: en

e Ecto.Repo - repositories are wrappers around the data store. Via the
repository, we can create, update, destroy and query existing entries. A
repository needs an adapter and credentials to communicate to the

database

o000 [] < [)] Not Secure — absinthe-graphql.org ¢ ©) ﬂ] r
® Ecto.Schema - schemas are used to map any data source into an Elixir

struct. We will often use them to map tables into Elixir data but that's one ‘
of their use cases and not a requirement for using Ecto

e Ecto.Changeset - changesets provide a way for developers to filter and
cast external parameters, as well as a mechanism to track and validate _>
changes before they are applied to your data

e Ecto.Query - written in Elixir syntax, queries are used to retrieve
information from a given repository. Queries in Ecto are secure, avoiding
common problems like SQL Injection, while still being composable,
allowing developers to build queries piece by piece instead of all at once

00/

%% Start a static transaction

Pid = antidotec_pb_socket:start_link(“127.0.0.1”, 8087).
{ok, Tx} = start_transaction(Pid, Clock, Opts).

107474

%% Get a new counter and increment its value by 5

NewCounter = antidote_crdt_counter:new().

UpdatedCounter = antidotec_counter:increment(5, NewCounter).

00/

%% Convert into operations for the database
Obj = {<<“key">>, antidote_crdt_counter_pn, <<*“bucket'">>}.

UpdateOps = antidotec_counter:to_ops(0Obj, UpdatedCounter).

%% Write—-to and read-from the database.

ok = antidotec_pb:update_objects(Pid, [UpdateOps], Tx).

{ok, [Counter]} = antidotec_pb:read_objects(Pid, [Obj], Tx).

%% Unpack the persisted value.

CounterVal = antidotec_counter:value(Counter).

defmodule Account do
use Vax.Schema

alias Ecto.Changeset

schema "accounts" do

field :balance, Types.Counter
end

def changeset(account, attrs) do
account
|> Changeset.cast(attrs, [:balance])
end
end

{:0k, account} =
%Account{}

| > Account.changeset(%{balance: 5})
|> Repo.insert()

account.balance

%Account{}
| > Account.changeset (%{})
|> I0.1inspect()

=> #Ecto.Changeset<
action: nil,

changes: %{balance: 0},

errors: [],
data: #Account<>,
valid?: true

|> Repo.insert()

CREATE TABLE products (
product_no integer UNIQUE,
price numer-ic,
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

) ;

CREATE TABLE orders (
order_id integer PRIMARY KEY,

product_no REFERENCES products (product_no),

quantity 1nteger
)5

results = db.query(...)

work around null bugs 1n your app code!
valid _results = |

X for x 1n results 1f x.parent

RIch-CRDTSs

Standard database guarantees

We're using rich-CRDTSs
to build in “standard”

Referential integrity

database guarantees. Unique constraint

Three technigues:
Check constraints

conflict-free concurrency

semantics Prefixed uuid (autogenerated uuid)

runtime coordination using
reservations Auto-incremented sequential ID (unique sequence)

static analysis
Auto-incremented identifier (ordered unigue value)

Conflict-free concurrency semantics

S, S
'
'
(01,0}

Figure 1: Concurrent execution of enroll(p, t) and rem_tourn(t)
leads to an invariant violation.

Sinit
IlI - Op: enroll_t(p,t)
. Effects:

WA R R e e e e e e

: tournaments(t) =T

1 2
tournament | {}
player | {p} player | {p}
(.0}

merge(S1,5,)

|
player | {p} |\ Oumament(-
enrolled | {(p)] (B44WInS)

(b) Recreates tournament ¢.

Runtime coordination using reservations

ke dynamic locks Tokens per server:
| Bl | K&
distribute rights to Ell B

perform operations & o
) Counter value: 4
ACross regions

proactively
rebalance to
Mminimise
coordination

Tokens per server:

51 .. (2)
52 (1)

request_transfert(l)

consume(1)

Counter value: 4

Tokens per server:

51 . . (2)

Counter value: 3

// “normal” application code
def getUser(id: UserId): getUserResult {
atomic {
1T (user_exists(id)) {
return found(user_name_get(id), user_mail_get(id))

} else {

return notFound()

// explicit consistency specifications defining invariants
// that must be preserved.
invariant (forall r: invocationld, g: invocationId, u: UserId ::
r.info == removeUser (u)
&& g.info == getUser (u)
&& r happened before g

==> g.result == getUser_res(notFound()))

James Arthur
CEO

Software developer
and entrepreneur.
Co-Founder of Hazy,
LGN, Opendesk and
Post Urban.

Purva Gujar
Growth & Community

Founder and CEO at
Inceptive. Investment
at Rainbow Capital
and Swig. South Park
Commons. MIT.

llia Borovitinov
Founding Engineer

Senior full-stack
developer. Elixir,
Javascript, databases,
orchestration, web
app development.

Valter Balegas
Principal Engineer

Distributed systems
researcher and
engineer. Rich-CRDTs.
Just-right consistency.
MySQL at Oracle.

Dave Cottlehuber

Founding Engineer &
Chief People Officer
FreeBSD. CouchDB.
Distributed systems in

Erlang & Elixir. Values-
driven person & leader.

Felipe Stival

Founding Engineer

Software engineer,
focused on functional
programming and
distributed systems.
Elixir. Core Ecto team.

Annette Bieniusa
Chief Architect

Lead developer of
AntidoteDB at TUK.
Concurrent and
distributed software.
Geo-replication.

Vasilii Demidenok
Founding Engineer

Senior Engineer & Tech
Lead at Cisco, Klarnag,
Exante. Distributed
systems & formal
methods.

Marc Shapiro
Scientific Advisor

Co-inventor of CRDTs.
Inventor of the proxy.
Chief Scientist at
Concordant. Inria &
Sorbonne Université.

INvestors

LUNAR
VENTURES

|\ 4

Backing turopean
Deep Tech Founders

If you're a technical founder who's struggled to explain your tech
and vision to investors, we set up a fund for you. We invest pre-
revenue to help turn your science fiction into reality.

Mick Halsband

y @0

CTO and software architect. Two
decades of key roles at startups
and multinational leading tech
firms. Led software development
for embedded mobile, realtime
systems, computer graphics,
computer vision, and trading
infrastructure

Dr. Elad Verbin

Yy [&

Computer Science Researcher,
experience leading R&D in
industry and academia. Public
speaker and community
moderator atPyData Berlin.
Worked and published with top
academics and Turing Award
laureates.

High-level proposition hypothesis

N
Low latency Collaboration Geo-distribution
solve the global write-path real time, multi-player apps and orchestrate geo-distributed
latency problem collaboration tools deployment topologies
help mainstream apps use low- iImmersive web, virtual worlds simplify engineering
latency CRDT tech challenges

unify structured and
snappy UX without failure code collaborative data model data plane for edge/fass

Drill down on specific use-cases

Product
development

Discrete
INnterventions

INnsight into
demand

Customer
development

how tight is your ideal customer

Customer " . .
, definition? can you identity common 0-5
segmentation . . -
oain and buying characteristics?
do you have a consistent value
Value . . .
- proposition with strong evidence of 0-5
Proposition -
willingness to pay?
. have you validated your pricin
Pricing / . YOI P J 0-5
assumptions?
moact how much business value -5
P have you delivered?
TOTAL (out of 20)

Desire paths | self-selection

Low latency
geo-distribution

Snappy UX

Redltime
collaboration

Genesis

Engineering
edge data
plane

Optimistic
writes with
fallure code

Custom
mMultiplayer
system

Custom build

Vaxine?

Vaxine?

Vaxine?

Product

Commodity

Fdge data plane

@ €] U B @ blog.cloudflare.com e © + »

CLOUDFLARE

Announcing Cloudflare's Database Partners

I 16/04/2021
el lﬂ Greg McKeon q Abhi Das

A Serverless Runtime on the BEAM

Get Started with the "Massa Service-Proxy"

Inversion of State

 FaaS is usually stateless

- State is brought to the
function.

« State Model to choose
 Action
« Eventsourcing
* CRDTs
« Value Entity (CRUD)

Cloudflare Workers is the easiest way for developers to deploy their application’s
code with performance, scale and security baked in. No configuration necessary.
Worker code scales to serve billions of requests close to your users across
Cloudflare's 200+ data centers.

But that's not the only interesting problem we need to solve. Every application

Sndppy UX import { commitMutation, graphgl } from ‘react-relay';

const mutation = graphqgl
mutation ReadMessageMutation($Sinput:
ReadMessageMutationInput!) {

(ooo b < > 8 relay.dev ¢ © + 51 ReadMessage(input: S$input) {
message {
status

¥

;
commitMutation(
env,

Built for scale {

Relay is designed for high performance at any scale. Relay keeps management of data-

mutation,

fetching easy, whether your app has tens, hundreds, or thousands of components. And \/ a r —| a b —L e S
thanks to Relay’s incremental compiler, it keeps your iteration speed fast even as your app)

grovs optimisticResponse: {
Keeps iteration quick ReadMessa ge: {
Relay is data-fetching turned declarative. Components declare their data dependencies, m e S S a g e . { S t a _t U S . ¢ R E A D ’ }

without worrying about how to fetch them. Relay guarantees that the data each component
needs is fetched and available. This keeps components decoupled and promotes reuse. }

With Relay, components and their data dependencies can be quickly modified without
modifying other parts of the system. That means you won't accidentally break other }

components as you refactor or make changes to your app. OﬂCOmp—Leted : () :> {} /* Mutatj On COmp—Leted 7‘(/ 5
Aut ti timizati 1
utomatic optimizations onError: error => {} /x Mutation errored x/

Relay's compiler aggregates and optimizes the data requirements for your entire app, so
that they can be efficiently fetched in a single GraphQL request. }

Relay handles the heavy lifting to ensure the data declared by your components is fetched)

in the most efficient way. For example, by deduplicating identical fields, and precomputing

Multi-user

“When we first
started building
Multiplayer
functionality in
-igma four
years ago, we
decided to
develop our
own solution.”

) @ figma.com ¢, © h + ©

Products v Enterprise v Pricing Community v Company v "B English v Log in m

Nothing great is
made alone.

Figma connects everyone in the design process
so teams can deliver better products, faster.

Try Figma for free

Join us!

Welbsite

https://vaxine.io

GitHuUb

github.com/vaxine-io

Twitter

@VaxinelO

&
[

M <

VAXINE

PROJECT
Why Vaxine?

« Community

Contact
Team
Jobs

TECHNOLOGY

How it Works
Literature

DEVELOPMENT

Roadmap
Contributing
License

) @ vaxine.io ¢ © O + ©

Why Vaxine? How it works Roadmap Contribute O a

Community ON THIS PAGE

Top
Vaxine is an open source platform and open community project. You're very
welcome to and, if you're interested in
what we're doing, hop onto our Discord and say hello!

Related projects

@ Join our Discord

General

YIITELILE

D ™

Connect

Related projects

See the community info and projects on and the

Other interesting projects include:

https://vaxine.io

