
Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Practical Client-side Replication:
Weak Consistency Semantics for
Insecure Settings

Albert van der Linde, João Leitão, Nuno Preguiça
NOVA LINCS

NOVA School of Science and Technology
NOVA University Lisbon

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Context
Applications where users interact with each other are highly
impacted by client-server latency, especially noticeable if users
are very close to each other:
• Editing documents;
• Audience engagement;
• Multi-user games.

2

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Context
One way to reduce latency among interactions is by letting
user’s devices communicate directly – P2P.

3

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Context
What is necessary to make this work?
• Clients maintain partial replicas of the DB;
• Generate operations locally and propagate over the p2p network.

How about consistency?
• Need to rely on weak consistency – causal consistency as the

strongest available consistency level;
• Need to manage concurrent update – CRDTs.

Our solution: Legion, a framework to extend web-based
applications with peer-to-peer synchronization.

4

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Context
Comparing the P2P approach vs client-server:
• server in Ireland, clients spread over different DCs in France.

Legion from:
A. van der Linde, et al.
Legion: Enriching internet
services with peer-to-peer
interactions. WWW ’17

5

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Context
Conclusion: P2P provides much lower latency.

Important for interactive applications where low latency is key for
user experience.

What can go wrong with clients generating and propagating
operations?
• Cheating becomes an issue.

6

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Outline
• Introduction
• Possible attacks

• Generic attacks to broadcast
• Attacks to causal ordering

• Secure causal consistency semantics
• Secure causal consistency
• Strict secure causal consistency
• Secure extended causal consistency

7

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Attack: tamper with existing messages
While propagating operations malicious users can, for example:
• Not propagate some messages selectively;
• Changing the message contents.

8

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Attack: create different operations with
same identifier
Send different messages with the same identifiers to separate
groups, leading to diverging state:
• E.g.: send a praise to some users and an insult to others;
• If Replicas A and D connect directly and synchronize, systems using

version vectors to summarize the state assume that both replicas are
synchronized.

9

M:5
Insult

M:5
Praise

M:5
Insult

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Outline
• Introduction
• Possible attacks

• Generic attacks to broadcast
• Attacks to causal ordering

• Secure causal consistency semantics
• Secure causal consistency
• Strict secure causal consistency
• Secure extended causal consistency

10

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Attack: depend on the future
Simple game: users are to defeat a monster and attempt to
pickup any item that is dropped.
• Players: attack monster

• Monster: drops an item
• Players observe the drop,

• Players attempt to pickup the item

11

PlayerA:5 : Attack

PlayerB:5 : Attack

Monster:6 : Drop

PlayerA:6 : Pickup

...

time

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Attack: depend on the future
Simple game: users are to defeat a monster and attempt to
pickup any item that is dropped.
• Players: attack monster

• Monster: drops an item
• Players observe the drop,

• apply Mel:3 immediately
• Players attempt to pickup the item

• ???

Cheater picks up future drop

12

PlayerA:5 : Attack

PlayerB:5 : Attack

Monster:6 : Drop

PlayerA:6 : Pickup

...

Mel:3 : Pickup

time

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Depend on the future

13

time

Past Concurrent Future

A1:{}Replica A

Replica B

Replica M

B1:{A1,M1}

A3:{A2}

M1:{} M2:{M1,B1,A3}
Future Dep

A2:{A1,B1}

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Omit the past

15

time

Past Concurrent Future

A1:{}Replica A

Replica B

Replica M

B1:{A1,M1}

A3:{A2}

M1:{} M2:{M1}
Omit the past

A2:{A1,B1}

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Defending against these attacks
Byzantine fault-tolerant replication algorithms
• (Typically) Strong consistency;
• (Typically) Require synchronous coordination.

What is possible while keeping as much availability as possible?
Proposal:
• Define secure causal consistency models
• Propose techniques to implement these consistency models

17

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Outline
• Introduction
• Possible attacks

• Generic attacks to broadcast
• Attacks to causal ordering

• Secure causal consistency semantics
• Secure causal consistency
• Strict secure causal consistency
• Secure extended causal consistency

18

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Secure Causal Consistency
Defends against the following malicious behaviours:
• Creating two operations with the same identifier;
• Tampering with existing operations;
• Fine-grain control over dependencies not to include;
• Creating operations which depend on future operations.

19

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Secure Causal Consistency
Defends against the following malicious behaviours:
• Creating two operations with the same identifier;
• Tampering with existing operations;
• Fine-grain control over dependencies not to include;
• Creating operations which depend on future operations.

20

Not possible to avoid, but possible to detect.
• Operations signed.
• Our prototype uses a central server – that sends a

periodic signed hash of operations.
• Similar approach can be used in a decentralized way if

all replicas can communicate with each other.

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Secure Causal Consistency
Defends against the following malicious behaviours:
• Creating two operations with the same identifier;
• Tampering with existing operations;
• Fine-grain control over dependencies not to include;
• Creating operations which depend on future operations.

21

Using vector clocks or direct dependencies to record
dependencies avoids omitting a specific operation in the
past.
Still possible to omit some operations.

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Secure Causal Consistency
Defends against the following malicious behaviours:
• Creating two operations with the same identifier;
• Tampering with existing operations;
• Fine-grain control over dependencies not to include;
• Creating operations which depend on future operations.

22

Dependencies include a cryptographic summary (hash)
of all direct dependencies.
Operations include a random number to make them un-
guessable.

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Secure Causal Consistency
Example: depending on the future
monster drop
• The pickup operation must include a

hash of the actual operation it
depends on;
• Operations include a random number.

• Mel cannot create a valid hash
without observing the drop.

23

PlayerA:5 : Attack

PlayerB:5 : Attack

Monster:6 : Drop

PlayerA:6 : Pickup

...

Mel:3 : Pickup

time

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Secure Causal Consistency
The cost in latency: cryptographic overheads.

25

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Outline
• Introduction
• Possible attacks

• Generic attacks to broadcast
• Attacks to causal ordering

• Secure causal consistency semantics
• Secure causal consistency
• Strict secure causal consistency
• Secure extended causal consistency

26

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Strict secure causal consistency
Defends against the following malicious behaviours:
• Secure causal consistency, plus:
• Omitting any dependency.

Requires using exact causal dependencies.

27

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Problem for enforcement

28

time

A1:{}Replica A

Replica B

Replica M

B1:{A1,M1}

M1:{} M2:{M1}
Omit

Some correct and incorrect situations are indistinguishable by an
external observer.

A1:{}Replica A

Replica B

Replica M

B1:{A1,M1}

M1:{} M2:{M1}
OK

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Strict secure causal consistency
How to implement?
Rely on secure hardware (e.g. SGX) for managing operations in
each replica.

29

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Outline
• Introduction
• Possible attacks

• Generic attacks to broadcast
• Attacks to causal ordering

• Secure causal consistency semantics
• Secure causal consistency
• Strict secure causal consistency
• Secure extended causal consistency

30

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Some attacks are still possible
Strict causal consistency seems to require special hardware…
… and collusion can still be used to omit dependencies.

32

Missing dependency:

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Taking a step back

What do we want to avoid?
Having a replica that knows about
operation o and does not record o
in the dependencies of its new
operations.
This turns out to be very difficult.
What is the problem?
By omitting dependencies, a
replica might get advantageous
conflicting resolution results.

Maximum bid
O1:{}

bid(€20,X)

B2:{O1}
bid(€21,B)

A2:{O1}
bid(€21,A)

By omitting the dependency on B2, A2
might be the selected bid (assuming

first writer wins over concurrent bids).

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Taking a step back

A close approximation:
Allow a replica to create
operations concurrent with some
known operation o, but…
Guarantee that the operation has
a timestamp that registers it was
created later than o.

Maximum bid
O1: bid(€20,X)

B2:{O1} ,TS: 467
bid(€21,A)

A2:{O1} ,TS: 485
bid(€21,A)

The bid with the lowest
timestamp wins

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Send operation to a timestamping service, which sends back a
timestamped operation.
Propagate through the p2p network.

36

Secure extended causal consistency

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Secure extended causal consistency
The cost in latency: time to reach the TiS
• Closest cloud point of presence - AWS

37

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

On Server / TiS latency

1792 clients on the
Grid’5k platform

38

Latency depends on location:
• Server, TiS instances
• Client proximity

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

1792 clients on the
Grid’5k platform

On Server / TiS latency
Latency depends on location:
• Server, TiS instances
• Client proximity

39

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

On Server / TiS latency
Running a server replica close to every group of clients might not
be realistic, when there are plenty of clients.
• Replication becomes complex with too many write replicas.

Running a TiS is much simpler, as it is a stateless service.
Possible locations include:
• At edge locations such as 5G towser and ISPs;
• Geo-distributed at multiple cloud points of presence;
• On client devices within secure hardware modules (e.g., Intel’s SGX).

40

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings

Low latency for interactive applications:
• Partial replicas at clients and direct client-client propagation

Attacks on Causal Consistency
Secure Consistency Models
Evaluation
• Low overhead compared to unsecured
• Low latency compared to client-server

Summary

41

Practical Client-side Replication: Weak Consistency Semantics for Insecure Settings 42

Thank you!

• See our VLDB paper for:
• Formal definitions of the Attacks on Causal Consistency
• Formal definitions of Secure Consistency Models
• Secure Causal Consistency
• Secure Extended Causal Consistency

• + Strict Secure Causal Consistency!
• + Secure Eventual Linearizability!

• More on how to implement!
• Many more results

• Impact of malicious users!

