
Leaderless State-Machine Replication:
An Overview

Pierre Sutra
Télécom SudParis

Institut Polytechnique de Paris

RainbowFS Final Workshop, March 2022

2

Context: geo-replication

r1

r3

r2

(2)

(1)

(3)

(1) command
(2) some protocol
(3) response

r1, r2, .. = data replicas

3

r1

r3

Problematic:
transparent efficient
geo-replication

r2r2

Context: geo-replication

4

r1

r3

Problematic:
transparent efficient
geo-replication

r2

Context: geo-replication

5

r1

r3

Problematic:
transparent efficient
and robust
geo-replication r2

Context: geo-replication

6

Each replica holds a log L
Execute commands in log order
To append a command at position L[i]
- run i-th consensus

Classic State-Machine Replication [Paxos, Raft]

B A C

B A

B

r1

r2

r3

L[0] L[1] L[2]

https://dl.acm.org/doi/10.1145/279227.279229
https://dl.acm.org/doi/10.5555/2643634.2643666

7

Each replica holds a log L
Execute commands in log order
To append a command at position L[i]
- run i-th consensus

B+ A+ C+

B+ A+

B+

r1

r2

r3

X+ = command
 is executed

L[0] L[1] L[2]

Classic SMR

Generic SMR [GPaxos, GBcast]

8

Execute non-commuting commands in the same order in the log

B+ A+ C+

B+

A+

B
C

A = x ← 42

= y ← 7

= z ← x + y

r1

r2

r3

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-2005-33.pdf
https://link.springer.com/chapter/10.1007/3-540-48169-9_7

Leaderless SMR [DISC’05, SOSP’13]

9

Execute non-commuting commands according to the same graph

B+ A C

B+

A C

dep(A) = {C}

dep(C) = {B, A}

dep(B) = ∅

r1

r2

r3

https://dl.acm.org/doi/10.1007/11561927_27
https://dl.acm.org/doi/10.1145/2517349.2517350

Leaderless SMR

10

B+ A+ C+

B+

A C

- operation X executed once dep(X)
transitively closed

- cycles are broken deterministically

r1

r2

r3

Execute non-commuting commands according to the same graph

11

B+ A+ C+

B+

A C

Properties
- replicas agree on dep(X)
- (X, Y) non-commuting then X ∈ dep(Y) or Y ∈ dep(X)

r1

r2

r3

Execute non-commuting commands according to the same graph

Leaderless SMR

12

B+ A+ C+

B+

A C

Properties
- replicas agree on dep(X)
- (X, Y) non-commuting then X ∈ dep(Y) or Y ∈ dep(X)

r1

r2

r3
consE

nsus

 in
side

Execute non-commuting commands according to the same graph

Leaderless SMR

EPaxos uses 2f+1 processes (f = max #failures)

When a client executes command X
- pick a replica
- this replica is the coordinator for X, coord(X)
- coord(X) runs consensus over dep(X)

To do consensus on dep(X)
- try to agree spontaneously by contacting a fast quorum (f+f/2 replicas)

- when contacted, a replica sent back the commands conflicting with X seen so far
- if this fails, ask a slow quorum (f+1 replicas)

- in this slow path, the union of the reported deps by the fast quorum is used

Egalitarian Paxos [SOSP’13]

13

https://dl.acm.org/doi/10.1145/2517349.2517350

14

EPaxos

r1

r2

r3

r4

r5

A

(n=5, f=2)

A

15

r1

r2

r3

r4

r5

A

(n=5, f=2)

∅ →A

EPaxos

A

16

r1

r2

r3

r4

r5

A

(n=5, f=2)

∅ →A

fast path

EPaxos

A

17

r1

r2

r3

r4

r5

A dep(A)=∅

(n=5, f=2)

∅ →A

EPaxos

A

18

r1

r2

r3

r4

r5

A

B

dep(A)=∅

(n=5, f=2)

∅ →A

∅ →B

A →B

EPaxos

A

B

19

r1

r2

r3

r4

r5

A

B

dep(A)=∅

(n=5, f=2)

∅ →A

∅ →B

A →B

A →B A →B

dep(B)={A}

EPaxos

A

B

20

r1

r2

r3

r4

r5

A

B

dep(A)=∅

(n=5, f=2)

∅ →A

∅ →B

A →B

A →B A →B

dep(B)={A}
disagreement! slow path

EPaxos

A

B

EPaxos - AWS experiments

21

Takeaways:
- leaderless SMR is faster and more fair
- but needs most commands commute (EPaxos 100% is bad)

avoid disagreement
how? threshold union

Atlas [Eurosys’20]

22

consider a bag of items E, the k-threshold union of E, written ⨃k E,
are the items reported at least k+1 times in the sets of E
formally,

⨃k E = { Y : count(Y) ≥ k+1 }

E = {E1, E2,E3} with E1= {A,B,C}, E2= {A,C} and E3= {A}
then
- ⨃1 E = {A,C},
- ⨃2 E = {A},

https://dl.acm.org/doi/abs/10.1145/3342195.3387543

avoid disagreement
how? threshold union

EPaxos fast path condition:
given q ∈ Q, let depq be the dep. reported by q
then

fast-path iff ∀ q,p ∈ Q. depq= depp

Atlas

23

avoid disagreement
how? threshold union

Atlas fast path condition:
given q ∈ Q, let depq be the dep. reported by q
then

fast-path iff ⨃f Q = ⋃q depq
(=every dep. is reported at least f+1 times)

why this works?
- if a failure occurs, the dep. reported by

any majority quorum in Q is exactly ⨃f Q

Atlas

24

25

Atlas

r1

r2

r3

r4

r5

A

B

dep(A)=∅

A ∅ →A

B ∅ →B

A →B

dep(B)={A}

(n=5, f=1)* the coordinator takes the union of the reported deps.

Atlas - asynchrony in practice

26

Takeaways:
- concurrent link failures is a rare event at scale
- at most one slow site during the exp. (f=1)

13 GCP sites
all-to-all ping
over 3 months

Atlas - GCP experiments

27

Takeaways:
- Atlas better than EPaxos for large-scale deployment (n ≥ 5)

Tail latency [DISC’20, NSDI’21]

28

Takeaways:
- Tail latency in leaderless SMR protocols is a problem

https://arxiv.org/abs/2008.02512
https://www.usenix.org/conference/nsdi21/presentation/tollman

29

Tail latency

r1

r2

r3

r4

r5

(n=5, f=1)

A

B

C

D E

F

Tempo [Eurosys’21]

30

tame tail latency
how? agree on a timestamp per command

 + make the timestamp stable

Tempo fast path condition:
given q ∈ Q, let tsq be the timestamp reported, or promised, by q
then

fast-path iff let t = max{ tsq : q ∈ Q})
 then count(t) ≥ f+1

https://dl.acm.org/doi/abs/10.1145/3447786.3456236

31

Tempo

r1

r2

r3

r4

r5

A

B

ts(A)=1

A 1

B

ts(B)=2

1

2

(n=5, f=1)

Tempo - background stability mechanism

32

A command is stable once
- its timestamp, say t, is committed,
- every command with a timestamp lower

(or equal) to t is stable
- a quorum reports promises higher (or

equal) to t

Stable commands are executed in the order
of timestamps (ties are broken arbitrarily)

Here, A;B
as ts(A) = ts(B) and A < B

3

2 C A B

1 A A B C B

r1 r2 r3 r4 r5

pr
om

is
es

replicas

X = command
 is stable

33(n=5, f=1)

r1

r2

r3

r4

r5

3 C D D

2 D C A B E

1 A A B C B

r1 r2 r3 r4 r5

A;B;C

Tempo - background stability mechanism

34

Tempo

Takeaways:
- Tempo improves tail latency in leaderless SMR

5 GCP sites
512/256 (top/bottom)
clients per site
conflict rate is 2%

Conclusion

Leaderless SMR

- graph-based ordering of commands
- a coordinator per command X

- runs consensus on dep(X)
- faster and more fair than Paxos/Raft

Future directions

- scalability
- BFT (blockchain)

35

