
© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Building a rich-CRDT
database on AntidoteDB.

RainbowFS Workshop, Monday 28 March 2022
Sorbonne-Université–LIP6, Paris, France

James Arthur, CEO
https://vaxine.io

https://vaxine.io

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

TCC+:

– Highly Available
Transactions

– Sticky Availability

– Causal Consistency

– CRDTs

Antidote

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

– TCC+ is a Cure for
consistency under
partition

– Antidote
implements the
Cure protocol

– Vaxine is a delivery
mechanism for
the Antidote

Delivery
mechanism

“Vaxine”

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

✓ cloud database
❌ not edge / p2p / byzantine tolerant

✓ online system
❌ not offline / local first

✓ 5 - 15 data centres
❌ not hundreds or thousands

✓ optimised for latency + integrity
❌ not throughput or storage efficiency

Goals

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Layers

 Backend App

 DB Cluster

Antidote

Vaxine

Live events

Subscriptions

Storage

Reservations Data model Queries

Inter-DC replication

Tx controller

Vax

Protocol Buffers API

Ecto Adapter Vaxine driver PubSubMigrations

Phoenix (inc. LiveView) AbsintheEcto

Client

Public HTTP, Sockets GraphQL

CRDTs

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Apache
2.0

Open source

 Backend App

 DB Cluster

Antidote

Vaxine

Live events

Subscriptions

Storage

Reservations Data model Queries

Tx controller

Vax

Protocol Buffers API

Ecto Adapter Vaxine driver PubSubMigrations

Phoenix (inc. LiveView) AbsintheEcto

Client

Public HTTP, Sockets GraphQL

CRDTs

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Natural fit:

– we’re building on a
BEAM-based system

– overlap between Erlang/
Elixir and distributed
systems communities

– Phoenix LiveView is
driving demand for
geo-distributed
deployment

Elixir

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Key integration
target:

– relational-oriented data
access library

– easy to use and familiar
for generalist web
developers

Ecto

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

The world

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

defmodule Account do
 use Vax.Schema
 alias Ecto.Changeset

 schema "accounts" do
 field :balance, Types.Counter
 end

 def changeset(account, attrs) do
 account
 |> Changeset.cast(attrs, [:balance])
 end
end

{:ok, account} =
 %Account{}
 |> Account.changeset(%{balance: 5})
 |> Repo.insert()

account.balance

%% Start a static transaction
Pid = antidotec_pb_socket:start_link(“127.0.0.1”, 8087).
{ok, Tx} = start_transaction(Pid, Clock, Opts).

%% Get a new counter and increment its value by 5
NewCounter = antidote_crdt_counter:new().
UpdatedCounter = antidotec_counter:increment(5, NewCounter).

%% Convert into operations for the database
Obj = {<<“key">>, antidote_crdt_counter_pn, <<“bucket">>}.
UpdateOps = antidotec_counter:to_ops(Obj, UpdatedCounter).

%% Write-to and read-from the database.
ok = antidotec_pb:update_objects(Pid, [UpdateOps], Tx).
{ok, [Counter]} = antidotec_pb:read_objects(Pid, [Obj], Tx).

%% Unpack the persisted value.
CounterVal = antidotec_counter:value(Counter).

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

“Surgical
precision” %Account{}

|> Account.changeset(%{})
|> IO.inspect()

=> #Ecto.Changeset<
 action: nil,
 changes: %{balance: 0},
 errors: [],
 data: #Account<>,
 valid?: true
>

|> Repo.insert()

Key design decision:

A. vertical integration with a
single language client /
data access library; vs

B. language agnostic
network protocol

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

CREATE TABLE products (
 product_no integer UNIQUE,
 price numeric,
 discounted_price numeric,
 CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no REFERENCES products (product_no),
 quantity integer
);

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Complexity

Compensating with
failure code:

– write application code to
handle failure/edge cases

– you want to put that
complexity back in the
database

results = db.query(...)

work around null bugs in your app code!
valid_results = [
 x for x in results if x.parent
]

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Rich-CRDTs

We’re using rich-CRDTs
to build in “standard”
database guarantees.

Three techniques:

✓ conflict-free concurrency
semantics

✓ runtime coordination using
reservations

❌ static analysis

Standard database guarantees

Referential integrity

Unique constraint

Check constraints

Prefixed uuid (autogenerated uuid)

Auto-incremented sequential ID (unique sequence)

Auto-incremented identifier (ordered unique value)

Conflict-free concurrency semantics

Runtime coordination using reservations

– like dynamic locks

– distribute rights to
perform operations
across regions

– proactively
rebalance to
minimise
coordination

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Static analysis

A. use rich-CRDTs to add
coordination at runtime; or

B. use static analysis of an
explicit consistency
specification to mark
operations as coordination
free or not

➡ static analysis typically
requires knowing the “whole
programme”, which is
challenge in real world
environments

// “normal” application code
def getUser(id: UserId): getUserResult {
 atomic {
 if (user_exists(id)) {
 return found(user_name_get(id), user_mail_get(id))
 } else {
 return notFound()
 }
 }
}

// explicit consistency specifications defining invariants
// that must be preserved.
invariant (forall r: invocationId, g: invocationId, u: UserId ::
 r.info == removeUser(u)
 && g.info == getUser(u)
 && r happened before g
 ==> g.result == getUser_res(notFound()))

Formal verification
(ahead of time) of
explicit consistency
specifications.

❌ harder for general
developers to reason
about

❌ brittle when exposed to
real world deployment
and usage patterns

James Arthur
CEO
Software developer
and entrepreneur.
Co-Founder of Hazy,
LGN, Opendesk and
Post Urban.

Valter Balegas
Principal Engineer
Distributed systems
researcher and
engineer. Rich-CRDTs.
Just-right consistency.
MySQL at Oracle.

Annette Bieniusa
Chief Architect
Lead developer of
AntidoteDB at TUK.
Concurrent and
distributed software.
Geo-replication.

Purva Gujar
Growth & Community
Founder and CEO at
Inceptive. Investment
at Rainbow Capital
and Swig. South Park
Commons. MIT.

Dave Cottlehuber
Founding Engineer &
Chief People Officer
FreeBSD. CouchDB.
Distributed systems in
Erlang & Elixir. Values-
driven person & leader.

Marc Shapiro
Scientific Advisor
Co-inventor of CRDTs.
Inventor of the proxy.
Chief Scientist at
Concordant. Inria &
Sorbonne Université.

Felipe Stival
Founding Engineer
Software engineer,
focused on functional
programming and
distributed systems.
Elixir. Core Ecto team.

Vasilii Demidenok
Founding Engineer
Senior Engineer & Tech
Lead at Cisco, Klarna,
Exante. Distributed
systems & formal
methods.

Ilia Borovitinov
Founding Engineer
Senior full-stack
developer. Elixir,
Javascript, databases,
orchestration, web
app development.

Company

Investors

High-level proposition hypothesis

Low latency

– solve the global write-path
latency problem

– help mainstream apps use low-
latency CRDT tech

– snappy UX without failure code

Collaboration

– real time, multi-player apps and
collaboration tools

– immersive web, virtual worlds

– unify structured and
collaborative data model

Geo-distribution

– orchestrate geo-distributed
deployment topologies

– simplify engineering
challenges

– data plane for edge/fass

Drill down on specific use-cases

Product
development

Customer
development

Discrete
interventions

Insight into
demand

Customer
segmentation

how tight is your ideal customer
definition? can you identify common
pain and buying characteristics?

0 - 5

Value
proposition

do you have a consistent value
proposition with strong evidence of
willingness to pay?

0 - 5

Pricing
have you validated your pricing
assumptions?

0 - 5

Impact
how much business value
have you delivered?

0 - 5

TOTAL (out of 20) …

Desire paths / self-selection

Genesis Custom build Product Commodity

Realtime
collaboration

Custom
multiplayer

system
Vaxine?

Low latency
geo-distribution

Engineering
edge data

plane
Vaxine?

Snappy UX
Optimistic
writes with

failure code
Vaxine?

Edge data plane

import { commitMutation, graphql } from ‘react-relay';

const mutation = graphql`
 mutation ReadMessageMutation($input:
ReadMessageMutationInput!) {
 ReadMessage(input: $input) {
 message {
 status
 }
 }
 }
`;

commitMutation(
 env,
 {
 mutation,
 variables,
 optimisticResponse: {
 ReadMessage: {
 message: {status: ‘READ’}
 }
 }
 onCompleted: () => {} /* Mutation completed */,
 onError: error => {} /* Mutation errored */
 }
)

Snappy UX

Multi-user

“When we first
started building
multiplayer
functionality in
Figma four
years ago, we
decided to
develop our
own solution.”

© 2021 Electric DB Limited. Private & confidential. Information for accredited investors only.

Company

Join us!

Website
➡ https://vaxine.io

GitHub
➡ github.com/vaxine-io

Twitter
➡ @VaxineIO

https://vaxine.io

