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TCC+: 

– Highly Available 
Transactions 

– Sticky Availability 

– Causal Consistency 

– CRDTs

Antidote
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– TCC+ is a Cure for 
consistency under 
partition 

– Antidote 
implements the 
Cure protocol 

– Vaxine is a delivery 
mechanism for 
the Antidote

Delivery 
mechanism

“Vaxine”
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✓ cloud database 
❌ not edge / p2p / byzantine tolerant 

✓ online system 
❌ not offline / local first 

✓ 5 - 15 data centres 
❌ not hundreds or thousands 

✓ optimised for latency + integrity  
❌ not throughput or storage efficiency

Goals
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Natural fit: 

– we’re building on a         
BEAM-based system 

– overlap between Erlang/
Elixir and distributed 
systems communities 

– Phoenix LiveView is 
driving demand for    
geo-distributed 
deployment

Elixir
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Key integration 
target: 

– relational-oriented data 
access library 

– easy to use and familiar 
for generalist web 
developers

Ecto
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The world
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defmodule Account do 
  use Vax.Schema 
  alias Ecto.Changeset 

  schema "accounts" do 
    field :balance, Types.Counter 
  end 
   
  def changeset(account, attrs) do 
    account 
    |> Changeset.cast(attrs, [:balance]) 
  end 
end 

{:ok, account} = 
  %Account{} 
  |> Account.changeset(%{balance: 5}) 
  |> Repo.insert() 

# account.balance

%% Start a static transaction 
Pid = antidotec_pb_socket:start_link(“127.0.0.1”, 8087). 
{ok, Tx} = start_transaction(Pid, Clock, Opts). 

%% Get a new counter and increment its value by 5 
NewCounter = antidote_crdt_counter:new(). 
UpdatedCounter = antidotec_counter:increment(5, NewCounter). 

%% Convert into operations for the database 
Obj = {<<“key">>, antidote_crdt_counter_pn, <<“bucket">>}. 
UpdateOps = antidotec_counter:to_ops(Obj, UpdatedCounter). 

%% Write-to and read-from the database. 
ok = antidotec_pb:update_objects(Pid, [UpdateOps], Tx). 
{ok, [Counter]} = antidotec_pb:read_objects(Pid, [Obj], Tx). 

%% Unpack the persisted value. 
CounterVal = antidotec_counter:value(Counter).
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“Surgical 
precision” %Account{} 

|> Account.changeset(%{}) 
|> IO.inspect() 

=> #Ecto.Changeset< 
  action: nil, 
  changes: %{balance: 0}, 
  errors: [], 
  data: #Account<>, 
  valid?: true 
> 

|> Repo.insert() 

Key design decision: 

A. vertical integration with a 
single language client / 
data access library; vs 

B. language agnostic 
network protocol
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CREATE TABLE products ( 
    product_no integer UNIQUE, 
    price numeric, 
    discounted_price numeric, 
    CHECK (discounted_price > 0), 
    CHECK (price > discounted_price) 
); 

CREATE TABLE orders ( 
    order_id integer PRIMARY KEY, 
    product_no REFERENCES products (product_no), 
    quantity integer 
); 
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Complexity

Compensating with 
failure code:  

– write application code to 
handle failure/edge cases 

– you want to put that 
complexity back in the 
database

results = db.query(...) 

# work around null bugs in your app code! 
valid_results = [ 
    x for x in results if x.parent 
] 
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Rich-CRDTs

We’re using rich-CRDTs 
to build in “standard” 
database guarantees. 

Three techniques: 

✓ conflict-free concurrency 
semantics 

✓ runtime coordination using 
reservations 

❌ static analysis

Standard database guarantees

Referential integrity

Unique constraint

Check constraints

Prefixed uuid (autogenerated uuid)

Auto-incremented sequential ID (unique sequence)

Auto-incremented identifier (ordered unique value)



Conflict-free concurrency semantics





Runtime coordination using reservations

– like dynamic locks 

– distribute rights to 
perform operations 
across regions 

– proactively 
rebalance to 
minimise 
coordination
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Static analysis

A. use rich-CRDTs to add 
coordination at runtime; or 

B. use static analysis of an 
explicit consistency 
specification to mark 
operations as coordination 
free or not 

➡ static analysis typically 
requires knowing the “whole 
programme”, which is 
challenge in real world 
environments

// “normal” application code 
def getUser(id: UserId): getUserResult { 
  atomic { 
    if (user_exists(id)) { 
      return found(user_name_get(id), user_mail_get(id)) 
    } else { 
      return notFound() 
    } 
  } 
} 

// explicit consistency specifications defining invariants 
// that must be preserved. 
invariant (forall r: invocationId, g: invocationId, u: UserId :: 
     r.info == removeUser(u) 
  && g.info == getUser(u) 
  && r happened before g 
  ==> g.result == getUser_res(notFound()))

Formal verification 
(ahead of time) of 
explicit consistency 
specifications. 

❌ harder for general 
developers to reason 
about 

❌ brittle when exposed to 
real world deployment 
and usage patterns
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High-level proposition hypothesis

Low latency 

– solve the global write-path 
latency problem 

– help mainstream apps use low-
latency CRDT tech 

– snappy UX without failure code 

Collaboration 

– real time, multi-player apps and 
collaboration tools 

– immersive web, virtual worlds 

– unify structured and 
collaborative data model 

Geo-distribution 

– orchestrate geo-distributed 
deployment topologies 

– simplify engineering   
challenges 

– data plane for edge/fass



Drill down on specific use-cases

Product 
development

Customer 
development

Discrete 
interventions

Insight into 
demand

Customer 
segmentation

how tight is your ideal customer 
definition? can you identify common 
pain and buying characteristics?

0 - 5

Value      
proposition

do you have a consistent value 
proposition with strong evidence of 
willingness to pay?

0 - 5

Pricing
have you validated your pricing 
assumptions?

0 - 5

Impact
how much business value 
have you delivered?

0 - 5

TOTAL (out of 20) … 



Desire paths / self-selection

Genesis Custom build Product Commodity

Realtime 
collaboration

Custom 
multiplayer 

system
Vaxine?

Low latency 
geo-distribution

Engineering 
edge data 

plane
Vaxine?

Snappy UX
Optimistic 
writes with 

failure code
Vaxine?



Edge data plane



import { commitMutation, graphql } from ‘react-relay'; 

const mutation = graphql` 
  mutation ReadMessageMutation($input: 
ReadMessageMutationInput!) { 
    ReadMessage(input: $input) { 
      message { 
    status 
      } 
    } 
  } 
`; 

commitMutation( 
  env, 
  { 
    mutation, 
    variables, 
    optimisticResponse: { 
      ReadMessage: { 
        message: {status: ‘READ’} 
      } 
    } 
    onCompleted: () => {} /* Mutation completed */, 
    onError: error => {} /* Mutation errored */ 
  } 
)

Snappy UX



Multi-user

“When we first 
started building 
multiplayer 
functionality in 
Figma four 
years ago, we 
decided to 
develop our 
own solution.”
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Company


Join us!

Website 
➡ https://vaxine.io  

GitHub 
➡ github.com/vaxine-io  

Twitter 
➡ @VaxineIO

https://vaxine.io

