Design and implementation of
ElmerfS

Romain Vaillant

e POSIX file system interface.

W h at i S E I m e rFS ? e Active-Active geo-replication.

e Highly Available

CRDTs are a perfect fit for that!

e Independant and concurrent updates without coordination.

e Strong eventual consistency.

e Optimistic Replication

Architecture overview

F9NANntiooteDB
gy / L

Directories

e Directories are represented as a set of tuples to reference inodes.
e Fach request need to fetch the up to date directory with AntidoteDB.

e It can be expensive, we might download a huge folder for a single
lookup.

(ino 3, name: “toto”) von (ino 4, name: “tata”)

Files

Files are stream of fixed size Last Writer Win Register addressed by their
offset:

e No registry to reference those blobs.
e No Link between blobs
e Gaps are allowed

EE =

(offset 0) (offset 1) (offset n)

The other side of

the coin

Name conflicts.
Divergent renames.
Cyclic renames.
Deletion of inodes.

Content conflicts.

Alice and Bob are in a hurry.

Alice$ vim shared/report.md
In the meantime...

BobS emacs shared/report.md

What should happen ?

What existing systems are doing *

Cloud services Strategy
Google Drive Rename files (divergent)
One Drive Rename files

(consistent)

Rename files

Dropbox (consistent)

* Design and Implementation of a Concurrency Benchmark Tool for Cloud Storage Systems Weiwei Cai et al.

We can rename files!

§ 1s /shared/
S “report.md - (1)” “report.md - (2)”

You need to know how the system works to predict its
behavior...

..and that the application didn’t create any
conflicting files.

What we would like

to happen

A simple mental model.

No after-the-fact
corrections.

Prevent applications from

breaking.

11

Alice and Bob try ElmerFS.

Alice$ vim shared/report.md // Bob$ emacs shared/report.md

Leads to

AliceS$S 1ls /shared/
Alice$S “report.md” “report.md:Bob”

BobS 1s /shared/
BobS “report.md” “report.md:Alice”

We can use a simple set right ?

We can represent directories as a set...

{ .., (name: “report.md”, ino: 9),
(name: “report.md”, ino: 1),

But this does not solve the problem at all!
Convergence does not mean correctness!

Track the operation origin

We need to identify the origin of the operation:

{ .., (name: “report.md”, ino: @0, viewId: Alice),
(name: “report.md”, ino: 1, viewId: Bob), .. }

Every operation has a view ID associated with it.

Interfacing with Bob’s obliviousness.

What the system sees:

{.., (name: “report.md”, ino: ©, viewId: Bob), ..}

What the system shows (implicit/explicit):

BobS 1ls shared/report.md BobS 1s shared/report.md:Bob
S report.md S report.md

The other side of

the coin

Name conflicts.
Divergent renames.
Cyclic renames.
Deletion of inodes.

Content conflicts.

16

Divergent renames

—>

We created a reference!

Reference counting doesn’t work

e A rename operation only moves references.

e Uniqueness and transactions

® Use Last Writer Win semantic for folders

Divergent renames

{ (parent: “/”", name: “E1"”, ino: 0, viewId: Bob),
(parent: “/", name: “E2”, ino: 0, viewId: Alice) }

== { (parent: “/", name: “E", ino: 0, viewId: Bob) }

The other side of

the coin

Name conflicts.
Divergent renames
Cyclic renames.
Deletion of inodes.
Content conflicts.

20

How the filesystem handles
Active-Active geo-distribution

- Compare it against a filesystem
Exp e rl m e n ts with strong consistency

Use workload representative of
a real-ish use case.

Choosing a contender

e There is no strict equivalent of ElmerFS.
e GlusterFS is a strongly consistent file system, open-source and well known .

e [t support asynchronous Active-Passive / synchronous Active-Active GEO-Replication.

Choosing a workload

Mailbox
2
|
I Mail
Mail

Experiments in 3 phases.

1. One Node, Single DC: Understanding the raw performance of typical workloads.

2. Multi Node, Single DC: Ensure that both ElmerFS and GlusterFS are well configured.

3. Multi Node, Multi DC: Measure response time in a GEO-replicated scenario to see the behaviour of each
system in these conditions

Experiments - Phase 1

25
glusterfs
—e— elmerfs
—e— ext4
20
L1
m
E 15
9 0!
C
I
©10
5
980 200 220 240 260 280

Throughput (ops/s)

Experiments - Phase 2 - 1DC / 6 Nodes

G5K

250
glusterfs
—o— elmerfs
200
16
_ L15
2150 14
g 11
%100 X0
| 9
- 8
7
6
50-
¥
o0 150 200 250 300

Throughput (ops/s)

350

Response time (ms)

160

140

[y
N
o

=
o
o

©
o

o))
o

IN
o

N
(=]

glusterfs
2 —e— elmerfs
1
0
a yo—1. .3 é—8 6’??3@
0 300 600 900 1200 1500 1800 2100 2400 2700

Throughput (ops/s)

Experiments - Phase 3 - 3DC / 6 Nodes

180

160

140

Response time (ms)
= =
N Y (@) (o] o N
o o o (@] (@] (@]

o

glusterfs
—e— elmerfs

100

150 200 250 300
Throughput (ops/s)

350

Implementations

- AntidoteDB

- ElmerFS

- Filebench

- Cloudal

28

https://github.com/AntidoteDB/antidote
https://github.com/scality/elmerfs
https://github.com/filebench/filebench
https://github.com/ntlinh16/cloudal

