
Design and implementation of
ElmerFS

1Romain Vaillant

What is ElmerFS?
● POSIX file system interface.

● Active-Active geo-replication.

● Highly Available

2

CRDTs are a perfect fit for that!

● Independant and concurrent updates without coordination.

Update can be accepted in any order, the system will always converge.

● Strong eventual consistency.

 The strongest form of eventual consistency

● Optimistic Replication

Accept the operation locally, apply it to other nodes later

3

Architecture overview

4

User FUSE

Directories

● Directories are represented as a set of tuples to reference inodes.

● Each request need to fetch the up to date directory with AntidoteDB.

● It can be expensive, we might download a huge folder for a single

lookup.

(ino 3, name: “toto”) (ino 4, name: “tata”)…

Files

Files are stream of fixed size Last Writer Win Register addressed by their

offset:

● No registry to reference those blobs.

● No Link between blobs

● Gaps are allowed

128kb 128kb 128kb…

(offset 0) (offset 1) (offset n)

The other side of
the coin

● Name conflicts.

● Divergent renames.

● Cyclic renames.

● Deletion of inodes.

● Content conflicts.

7

Alice and Bob are in a hurry.

 Alice$ vim shared/report.md

In the meantime...

 Bob$ emacs shared/report.md

What should happen ?

8

What existing systems are doing *

9

Cloud services Strategy

Google Drive Rename files (divergent)

One Drive Rename files
(consistent)

Dropbox Rename files
(consistent)

* Design and Implementation of a Concurrency Benchmark Tool for Cloud Storage Systems Weiwei Cai et al.

We can rename files!

$ ls /shared/
$ “report.md - (1)” “report.md - (2)”

You need to know how the system works to predict its
behavior...

...and that the application didn’t create any
conflicting files.

10

What we would like
to happen

● A simple mental model.

● No after-the-fact

corrections.

● Prevent applications from

breaking.

11

Alice and Bob try ElmerFS.

 Alice$ vim shared/report.md // Bob$ emacs shared/report.md

Leads to
Alice$ ls /shared/
Alice$ “report.md” “report.md:Bob”

Bob$ ls /shared/
Bob$ “report.md” “report.md:Alice”

12

We can use a simple set right ?

{ …, (name: “report.md”, ino: 0),
 (name: “report.md”, ino: 1), … }

We can represent directories as a set...

But this does not solve the problem at all!

Convergence does not mean correctness!

13

Track the operation origin

{ …, (name: “report.md”, ino: 0, viewId: Alice),
 (name: “report.md”, ino: 1, viewId: Bob), … }

We need to identify the origin of the operation:

Every operation has a view ID associated with it.

14

Interfacing with Bob’s obliviousness.

{…,(name: “report.md”, ino: 0, viewId: Bob), …}

What the system sees:

What the system shows (implicit/explicit):

Bob$ ls shared/report.md
 $ report.md

Bob$ ls shared/report.md:Bob
 $ report.md

15

The other side of
the coin

● Name conflicts.

● Divergent renames.

● Cyclic renames.

● Deletion of inodes.

● Content conflicts.

16

Divergent renames

/

E E1

/

E E2

/

E2E1

We created a reference!
17

Reference counting doesn’t work

● A rename operation only moves references.

● Uniqueness and transactions

(parent_ino, ino, name, view_id) is unique, we keep them in a CRDT set.

● Use Last Writer Win semantic for folders

 To elect only one reference if POSIX compliance is necessary.

18

Divergent renames

/

E2E1

{ (parent: “/”, name: “E1”, ino: 0, viewId: Bob),
 (parent: “/”, name: “E2”, ino: 0, viewId: Alice) }

{ (parent: “/”, name: “E”, ino: 0, viewId: Bob) }

E

19

The other side of
the coin

● Name conflicts.

● Divergent renames.

● Cyclic renames.

● Deletion of inodes.

● Content conflicts.

20

Experiments

● How the filesystem handles

Active-Active geo-distribution

● Compare it against a filesystem

with strong consistency

● Use workload representative of

a real-ish use case.

21

Choosing a contender

22

● There is no strict equivalent of ElmerFS.

● GlusterFS is a strongly consistent file system, open-source and well known .

● It support asynchronous Active-Passive / synchronous Active-Active GEO-Replication.

Choosing a workload

23

Mailbox
1

Mailbox
2

Mailbox
3

Mail
Mail

Mail

Mail
Mail
MailMail

Mail
Mail

Experiments in 3 phases.

24

1. One Node, Single DC: Understanding the raw performance of typical workloads.

2. Multi Node, Single DC: Ensure that both ElmerFS and GlusterFS are well configured.

3. Multi Node, Multi DC: Measure response time in a GEO-replicated scenario to see the behaviour of each

system in these conditions

Experiments - Phase 1

25

G5K

Experiments - Phase 2 - 1DC / 6 Nodes

26

OVH
G5K

Experiments - Phase 3 - 3DC / 6 Nodes

27

OVH

Implementations

- AntidoteDB

- ElmerFS

- Filebench

- Cloudal

28

https://github.com/AntidoteDB/antidote
https://github.com/scality/elmerfs
https://github.com/filebench/filebench
https://github.com/ntlinh16/cloudal

