
TOWARDS A CONSISTENCY-AWARE 
DATA PLACEMENT MECHANISM

RainbowFS Final Workshop

2022-03-28



CREDITS

• Work done during Etienne Mauffret’s Ph.D. thesis 

Univ. Savoie Mont Blanc – RainbowFS

• Currently ATER at ENS Lyon

• Ph.D. defense planned in a couple of months



DATA REPLICATION
IN LARGE-SCALE DISTRIBUTED SYSTEMS (1)

• Why

• Fault tolerance

• Multiple copies for each piece of data

=> Enhance durability and availability

• Performance

• Copies close to end users => low latency

• Local copy (local accesses / “off-line” operations)

• Many copies => load balance (e.g. Content Delivery Networks)



DATA REPLICATION
IN LARGE-SCALE DISTRIBUTED SYSTEMS (2)

• Issues / questions to answer

• How to add redundancy ?

• Erasure coding

• Replication

• How many copies ?

• How to handle “healing” (when/how maintenance/optimization should be performed) ?

• Which consistency model among copies ?

• Where copies should be placed ?



DATA PLACEMENT IS KEY

• Data placement impacts

• Data access performance (data availability)

• Close copies (distance users/data)

• Synchronization cost among copies

• Healing process performance => resilience

• RelaxDHT



DATA PLACEMENT IS HARD

• Many (dynamic) criteria to take into consideration

• Fault tolerance (correlated failures, healing process performance)

• Data access (a popular video / a backup)

• Localization

• Kind (reads/writes)

• Frequency

• Consistency protocol

• NP-hard problem



DATA PLACEMENT SHOULD TAKE 
CONSISTENCY IN CONSIDERATION

A
A1

A2

B

B1

users
data

?



CONSISTENCY AWARE DYNAMIC DATA REPLICATION 
CONTEXT AND GOAL

• Context: tradeoff performance vs consistency (CAP 
theorem)
• Good performance => adapted data consistency

• Just-right consistency : synchronize only if necessary

=> Data management systems already offer multiple consistency “levels”

• Goal: data replication should take into consideration
• Access patterns

• Location / type / frequency 

• Consistency protocol (strong or relaxed consistency, kind of synchronization, ...)



• The developer sets weights and priorities
• Are synchronizations more critical than user accesses (consistency protocol into 

consideration) ?

• Are some users more important than others ?

• Maintain metrics for each piece of data (monitoring)
• Access statistics (read / write frequencies for each user location)

• Locally (on each node storing a copy)

CONSISTENCY AWARE DYNAMIC DATA REPLICATION 
APPROACH (1)



• Periodically compute a new replica-set for each data
• On a per-data basis

• Analytically compute a new replica-set taking into consideration 

• The static weights - the consistency protocol

• The “recent” (dynamic) access statistics – the access patterns

=> computationally intensive (test all possibilities)

CONSISTENCY AWARE DYNAMIC DATA REPLICATION 
APPROACH (2)



CANDORSIM – A DATA PLACEMENT TOOL

• A discrete event simulator based on PeerSim

• Simulates storage nodes/user nodes, data accesses, synchronization

• Nodes monitor data accesses using our approach

• Periodically,  nodes 

• compute the right placement taking into account

• Weights

• Data access statistics

• Moves pieces of data to adapt placement if necessary



PERSPECTIVES

• Short term enhancement

• Reduce the problem size (topology-aware group of nodes)

• Adapt “when necessary” (vs periodically)

• Dynamic adaptation of the replication factor

• Create/remove copies according to access patterns/consistency needs

=> from consistency-aware data placement to consistency-aware data replication…

• Auto-tune => use traces and the simulator to learn which weights for which 
consistency protocol

• SkyData => toward intelligent and autonomous data !


